China wholesaler Home Appliance Shaft Motor with Great Deals with Great quality

Product Description

Introducing our high-quality Shaft, designed for various applications in the field of motors and gears. This versatile product is an essential component for any home appliance, ensuring smooth and efficient operation.

Our Shaft is expertly crafted using premium materials, guaranteeing durability and long-lasting performance. With its precise dimensions and excellent load-bearing capacity, it seamlessly integrates with motors and gears, providing optimal power transmission.

Featuring a sleek design, this Shaft is not only functional but also aesthetically pleasing. Its compact size allows for easy installation and compatibility with a wide range of home appliances

With our discounted price, you can now enhance the performance of your home appliances without breaking the bank. Don’t miss out on this incredible offer!

Keywords: Shaft, Axis, Motor Shaft, Gear

Available Material 1. Stainless Steel: AISI303, AISI304, AISI316, AISI416, AISI420,etc.
2. Free Cutting Steel:12L14,1215,etc.
3. Steel:C45(K1045), C20,etc
4. Aluminum: Al6061, Al6063, etc.
5. Carbon Steel:AISI1006,AISI1571,AISI1571,etc.
6. Alloy Steel: SCM435,10B21,etc.
7. According to customer’s requirement
Finish Electroplating: Zinc Plating, Ni Plating, Electroless Nickel Plating, Zn-Ni Alloy Plating, Tin Plating, Copper-plating, Hot-dip
Galvanizing, Black Oxide Coating, Black Anodizing, etc
Rust Preventive Oil
Testing Equipment CMM, Projector, Pull Tester, Projecting Apparatus
Salt Spray Test, Durometer, Coating Analyzer, Tensile Machine
Management System ISO9001 / IATF16949
Certification SGS, RoHS, Material Certification, PPAP
Production Capability Auto Lathe Turning: ODĪ¦1.0-20mm, Tolerance. Ā± 0.01mm
CNC Lathe Turning: ODĪ¦1.0-460mm, Tolerance. Ā± 0.005mm
CNC Milling:800x600mm (LxW), Tolerance.Ā±0.05mm
Grinding: Tolerance. Ā± 0.002mm
Screw Cold Heading and Rolling: Metric 0.8-M16
Injection: 300T Max
Stamping:2 50T Max

1.

Location

Kexionda Electric Machinery Manufacturing Co., Ltd. (KXD) was established in 1998 and is located in the hinterland of the Pearl River CHINAMFG in South China. It is a professional enterprise that develops and produces micromotors. It now has a factory area of more than 10,000 square meters, more than 200 employees, and an annual output of 5 million motors. It mainly produces single-phase series motors (universal motors) and permanent magnet-brushed DC motors. The products are suitable for household appliances, commercial appliances, and electric equipment, such as mixers, egg beaters, meat grinders, meat mincers, ice crushers, paper shredders, bean grinders, soy milk machines, cooking machines, cloth machines, laboratory homogenizer and a series of electric products.

2.

“integrity and pragmatism”

Since its establishment, KXD has continued to innovate and win the market with integrity. The company comprehensively implements modern management, conducts production and sales based on the principle of benefiting customers, produces key parts of products by itself, continuously introduces automated production equipment, takes “quality and service” as its life, “integrity and pragmatism” as its foundation, and through its Design, production, and management are integrated to meet customer delivery deadlines to the greatest extent, effectively control product quality and reduce costs.

3.

Production standards

KXD strictly implements national standards during the production process, establishes and maintains the effective operation of the quality management system, and all products have 100% passed domestic CCC certification. All export products comply with Rohs and can pass EMC, UL, CE, VDE, and other certification requirements.

4.

Customer – first

At present, our company has dedicated project personnel to track product development, production, and after-sales service throughout the entire process, and is committed to providing customers with high-quality product solutions.

Ā  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: Carbon Steel
Load: Drive Shaft
Stiffness & Flexibility: Stiffness / Rigid Axle
Journal Diameter Dimensional Accuracy: IT6-IT9
Axis Shape: Straight Shaft
Shaft Shape: Real Axis
Samples:
US$ 5.33/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

screw jack

How do screw jacks ensure controlled and synchronized movement in multi-jack systems?

Screw jacks are capable of ensuring controlled and synchronized movement in multi-jack systems through various mechanisms and techniques. These systems are commonly used in applications where multiple screw jacks need to work together to lift or position a load. Here’s how screw jacks achieve controlled and synchronized movement in multi-jack systems:

  • Mechanical Synchronization: Screw jacks can be mechanically linked in a multi-jack system to ensure synchronized movement. This can be achieved through the use of rigid couplings, connecting rods, or gear mechanisms that interconnect the input shafts of individual screw jacks. As a result, when one screw jack is operated to lift or lower the load, the mechanical linkage transfers the motion to the other screw jacks, causing them to move in sync. This ensures that all jacks contribute proportionally to the load and maintain a consistent lifting height.
  • Electrical Synchronization: In addition to mechanical synchronization, screw jacks can also be electrically synchronized in multi-jack systems. This is typically achieved through the use of motorized screw jacks controlled by a centralized control system. Each motorized screw jack is equipped with position sensors or encoders that provide feedback on their current position. The control system receives this feedback and adjusts the motor speed and direction for each screw jack to ensure synchronized movement. Electrical synchronization enables precise control and allows for adjustments to be made dynamically, compensating for any variations in load distribution or environmental conditions.
  • Load Sharing Mechanisms: In multi-jack systems, load sharing mechanisms can be employed to distribute the weight evenly among the screw jacks. Load sharing mechanisms can include load sensors or load cells that measure the individual loads on each jack. The control system then adjusts the lifting force applied by each screw jack to ensure equal distribution of the load. This prevents overloading of any individual jack and promotes balanced movement in the system.
  • Position Feedback and Control: Screw jacks in multi-jack systems can be equipped with position feedback devices, such as linear encoders or limit switches, that provide information on the position of the load. This feedback is used by the control system to precisely control the movement of the screw jacks, ensuring that they reach and maintain the desired positions. By continuously monitoring the position feedback, the control system can make adjustments to keep the jacks synchronized and maintain the desired level of control.
  • Control System Integration: A centralized control system can be used to integrate and coordinate the operation of multiple screw jacks in a multi-jack system. This control system can utilize programmable logic controllers (PLCs) or computer numerical control (CNC) systems to manage the movement, synchronization, and safety aspects of the screw jacks. The control system enables precise control, real-time monitoring, and the implementation of safety features, enhancing the overall performance and reliability of the multi-jack system.

By employing these mechanisms and techniques, screw jacks ensure controlled and synchronized movement in multi-jack systems. These systems find applications in various industries, such as heavy lifting, material handling, and industrial automation, where precise positioning and synchronized operation are critical requirements.

screw jack

Are there different types of screw jacks available for various load capacities?

Yes, there are different types of screw jacks available to accommodate various load capacities. Screw jacks are designed in different configurations and sizes to provide optimal performance and lifting capabilities for a wide range of loads. The load capacity of a screw jack depends on several factors, including the mechanical design, materials used, and the specific application requirements. Here are some common types of screw jacks based on load capacities:

  • Miniature Screw Jacks: Miniature screw jacks are compact and lightweight, designed to handle relatively low loads. These screw jacks are commonly used in applications where precise positioning or small load adjustments are required. Miniature screw jacks find applications in industries such as electronics, optics, and small-scale automation systems.
  • Standard Duty Screw Jacks: Standard duty screw jacks are versatile and widely used in various industrial applications. They are designed to handle moderate to high loads. These screw jacks offer a balance between load capacity and compactness, making them suitable for a wide range of lifting and positioning tasks in industries such as manufacturing, construction, and material handling.
  • Heavy Duty Screw Jacks: Heavy-duty screw jacks are specifically engineered to handle large and heavy loads. These screw jacks are characterized by their robust construction, high load capacities, and enhanced durability. Heavy-duty screw jacks are utilized in applications that involve heavy machinery, industrial presses, large-scale manufacturing, and other scenarios requiring substantial lifting forces.
  • Stainless Steel Screw Jacks: Stainless steel screw jacks are designed for applications where corrosion resistance and hygiene are crucial. These screw jacks are constructed using stainless steel components that offer excellent resistance to rust, chemicals, and environmental factors. Stainless steel screw jacks find applications in food processing, pharmaceuticals, clean rooms, and other industries with stringent cleanliness requirements.
  • Customized Screw Jacks: In addition to standard types, manufacturers also offer customized screw jacks tailored to specific load capacities and application requirements. Customized screw jacks can be engineered to handle extremely high loads or designed for unique lifting scenarios where off-the-shelf solutions may not be suitable. These customized screw jacks are often developed in collaboration with the customer to ensure optimal performance and reliability.

The availability of different types of screw jacks allows users to select the appropriate solution based on their specific load capacities and application needs. By offering a range of load capacities, manufacturers ensure that there is a suitable screw jack available for a wide variety of lifting and positioning tasks across various industries.

screw jack

How do screw jacks convert rotary motion into linear motion?

Screw jacks convert rotary motion into linear motion through the interaction between a threaded shaft, known as the screw, and a nut that engages with the screw’s threads. When the screw is rotated, it moves the nut along its threads, resulting in linear displacement. Here are the key steps that explain how screw jacks convert rotary motion into linear motion:

  • Threaded Shaft: The screw in a screw jack is a threaded shaft with helical grooves running along its length. The threads can be either square or trapezoidal in shape. The pitch of the screw refers to the distance traveled along the screw’s axis for each complete revolution.
  • Nut Engagement: The nut is a component that engages with the screw’s threads. It is typically a cylindrical or rectangular block with a threaded hole that matches the screw’s threads. The nut is free to move linearly along the screw’s length when the screw is rotated.
  • Rotary Motion: To convert rotary motion into linear motion, an external force is applied to rotate the screw. This force can be generated manually by turning a handle, using an electric motor, or employing hydraulic or pneumatic systems.
  • Linear Displacement: As the screw is rotated, the nut moves along the screw’s threads, causing linear displacement. The direction and magnitude of the displacement depend on the rotational direction and the pitch of the screw. Clockwise rotation typically results in upward linear displacement, while counterclockwise rotation leads to downward displacement.
  • Mechanical Advantage: Screw jacks provide a mechanical advantage due to the pitch of the screw. The pitch determines the distance traveled per revolution. By increasing the pitch or using multiple-start threads, the linear displacement achieved per rotation can be increased, allowing for the lifting or lowering of heavier loads with relatively less rotational effort.
  • Self-Locking: One important characteristic of screw jacks is their self-locking ability. The friction between the screw and the nut helps to maintain the position of the load once the rotational force is removed. This means that screw jacks can hold loads in position without requiring continuous power or external braking mechanisms.

In summary, screw jacks convert rotary motion into linear motion by rotating a threaded screw, which in turn moves a nut linearly along the screw’s threads. The pitch of the screw determines the linear displacement achieved per revolution, and the self-locking nature of the screw and nut interface helps maintain the position of the load without the need for additional mechanisms.

China wholesaler Home Appliance Shaft Motor with Great Deals   with Great quality China wholesaler Home Appliance Shaft Motor with Great Deals   with Great quality
editor by Dream 2024-04-25

Screw Jack

As one of the leading screw jack manufacturers, suppliers, and exporters of mechanical products, We offer screw jacks and many other products.

Please contact us for details.

Manufacturer supplier exporter of screw jack.

Recent Posts